Inhibition of c-Jun N-terminal kinase attenuates low shear stress-induced atherogenesis in apolipoprotein E-deficient mice.
نویسندگان
چکیده
Atherosclerosis begins as local inflammation of arterial walls at sites of disturbed flow, such as vessel curvatures and bifurcations with low shear stress. c-Jun NH₂-terminal kinase (JNK) is a major regulator of flow-dependent gene expression in endothelial cells in atherosclerosis. However, little is known about the in vivo role of JNK in low shear stress in atherosclerosis. We aimed to observe the effect of JNK on low shear stress-induced atherogenesis in apolipoprotein E-deficient (ApoE(-/-)) mice and investigate the potential mechanism in human umbilical vein endothelial cells (HUVECs). We divided 84 male ApoE(-/-) mice into two groups for treatment with normal saline (NS) (n = 42) and JNK inhibitor SP600125 (JNK-I) (n = 42). Perivascular shear stress modifiers were placed around the right carotid arteries, and plaque formation was studied at low shear stress regions. The left carotid arteries without modifiers represented undisturbed shear stress as a control. The NS group showed atherosclerotic lesions in arterial regions with low shear stress, whereas the JNK-I group showed almost no atherosclerotic lesions. Corresponding to the expression of proatherogenic vascular cell adhesion molecule 1 (VCAM-1), phospho-JNK (p-JNK) level was higher in low shear stress regions with NS than with JNK-I inhibitor. In HUVECs under low shear stress, siRNA knockdown and SP600125 inhibition of JNK attenuated nuclear factor (NF)-κB activity and VCAM-1 expression. Furthermore, siRNA knockdown of platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31) reduced p-JNK and VCAM-1 levels after low shear stress stimulation. JNK may play a critical role in low shear stress-induced atherogenesis by a PECAM-1-dependent mechanosensory pathway and modulating NF-κB activity and VCAM-1 expression.
منابع مشابه
Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis.
Atherosclerosis develops in the arterial system at sites of low as well as low and oscillating shear stress. Previously, we demonstrated a shear-related distribution of ciliated endothelial cells in the embryonic cardiovascular system and postulated that the primary cilium is a component of the shear stress sensor, functioning as a signal amplifier. This shear-related distribution is reminiscen...
متن کاملResveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملOral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice.
OBJECTIVE Caffeic acid phenethyl ester (CAPE), a natural flavonoid, specifically blocks activation of nuclear factor-kappaB (NF-kappaB). We examined the effects of oral CAPE supplementation on atherogenesis in apolipoprotein E-deficient (apoE-/-) mice. METHODS AND RESULTS Ten-week-old male apoE-/- mice were supplemented orally with CAPE (30 mg/kg body weight) for 12 weeks. At the end of admin...
متن کاملOxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells.
OBJECTIVE Deletion of the mitochondrial gene p66(Shc) protects from endothelial dysfunction and atherosclerotic plaque formation in mice fed a high-fat diet. However, the molecular mechanisms underlying this beneficial effect have not yet been delineated. The present study was designed to elucidate the proatherogenic mechanisms by which p66(Shc) mediates oxidized low-density lipoprotein (oxLDL)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine
دوره 17 9-10 شماره
صفحات -
تاریخ انتشار 2011